abstract_dataloader.ext.torch
¶
Pytorch interfaces and compatibility wrappers.
abstract_dataloader.ext.torch.Collate
¶
Bases: Collate[TTransformed, TCollated]
Generic numpy to pytorch collation.
Converts numpy arrays to pytorch tensors, and either stacks or concatenates each value.
Type Parameters
TTransformed
: input sample type.TCollated
: output collated type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mode
|
Literal['stack', 'concat']
|
whether to |
'concat'
|
Source code in src/abstract_dataloader/ext/torch.py
abstract_dataloader.ext.torch.Pipeline
¶
Bases: Module
, Pipeline[TRaw, TTransformed, TCollated, TProcessed]
Dataloader transform pipeline.
This pytorch-compatible pipeline extends
torch.nn.Module
. It recursively searches its inputs
for a .children() -> Iterator | Iterable
method, and checks the children
for any nn.Module
objects, which are registered as submodules.
Type Parameters
TRaw
: Input data format.TTransformed
: Data after the firsttransform
step.TCollated
: Data after the secondcollate
step.TProcessed
: Output data format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
Transform[TRaw, TTransformed] | None
|
sample transform; if |
None
|
collate
|
Collate[TTransformed, TCollated] | None
|
sample collation; if |
None
|
batch
|
Transform[TCollated, TProcessed] | None
|
batch collation; if |
None
|
Source code in src/abstract_dataloader/ext/torch.py
abstract_dataloader.ext.torch.TransformedDataset
¶
Bases: Dataset[TTransformed]
, Generic[TRaw, TTransformed]
Pytorch-compatible dataset with transformation applied.
Extends torch.utils.data.Dataset
,
implementing a torch "map-style" dataset.
Type Parameters
TRaw
: raw data type from the dataloader.TTransformed
: output data type from the provided transform function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset[TRaw]
|
source dataset. |
required |
transform
|
Transform[TRaw, TTransformed]
|
transformation to apply to each sample when loading (note
that |
required |